# A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Alexandre Ern; Sébastien Meunier

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

- Volume: 43, Issue: 2, page 353-375
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topErn, Alexandre, and Meunier, Sébastien. "A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems." ESAIM: Mathematical Modelling and Numerical Analysis 43.2 (2008): 353-375. <http://eudml.org/doc/194454>.

@article{Ern2008,

abstract = {
We analyze Euler-Galerkin approximations (conforming finite elements in
space and implicit Euler in time) to
coupled PDE systems in which one dependent
variable, say u, is governed by an elliptic equation and the other,
say p, by a parabolic-like equation. The underlying application is the
poroelasticity system within the quasi-static assumption. Different
polynomial orders are used for the u- and p-components to
obtain optimally convergent a priori bounds for all
the terms in the error energy norm.
Then, a residual-type
a posteriori error analysis is performed. Upon extending the
ideas of Verfürth for the heat equation [Calcolo40 (2003)
195–212],
an optimally convergent bound is derived for the dominant term in the
error energy norm and an equivalence result between residual and
error is proven. The error bound can be classically split into
time error, space error and data oscillation terms.
Moreover, upon extending the elliptic reconstruction technique
introduced by Makridakis and Nochetto [SIAM J. Numer. Anal.41 (2003) 1585–1594],
an optimally convergent bound is derived for the remaining terms in the
error energy norm. Numerical results are presented to
illustrate the theoretical analysis.
},

author = {Ern, Alexandre, Meunier, Sébastien},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Finite element method; energy norm; a posteriori error analysis; hydro-mechanical coupling; poroelasticity.; linearly porous medium; backward Euler scheme; conforming finite elements},

language = {eng},

month = {12},

number = {2},

pages = {353-375},

publisher = {EDP Sciences},

title = {A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems},

url = {http://eudml.org/doc/194454},

volume = {43},

year = {2008},

}

TY - JOUR

AU - Ern, Alexandre

AU - Meunier, Sébastien

TI - A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2008/12//

PB - EDP Sciences

VL - 43

IS - 2

SP - 353

EP - 375

AB -
We analyze Euler-Galerkin approximations (conforming finite elements in
space and implicit Euler in time) to
coupled PDE systems in which one dependent
variable, say u, is governed by an elliptic equation and the other,
say p, by a parabolic-like equation. The underlying application is the
poroelasticity system within the quasi-static assumption. Different
polynomial orders are used for the u- and p-components to
obtain optimally convergent a priori bounds for all
the terms in the error energy norm.
Then, a residual-type
a posteriori error analysis is performed. Upon extending the
ideas of Verfürth for the heat equation [Calcolo40 (2003)
195–212],
an optimally convergent bound is derived for the dominant term in the
error energy norm and an equivalence result between residual and
error is proven. The error bound can be classically split into
time error, space error and data oscillation terms.
Moreover, upon extending the elliptic reconstruction technique
introduced by Makridakis and Nochetto [SIAM J. Numer. Anal.41 (2003) 1585–1594],
an optimally convergent bound is derived for the remaining terms in the
error energy norm. Numerical results are presented to
illustrate the theoretical analysis.

LA - eng

KW - Finite element method; energy norm; a posteriori error analysis; hydro-mechanical coupling; poroelasticity.; linearly porous medium; backward Euler scheme; conforming finite elements

UR - http://eudml.org/doc/194454

ER -

## References

top- I. Babuška, M. Feistauer and P. Šolín, On one approach to a posteriori error estimates for evolution problems solved by the method-of-lines. Numer. Math.89 (2001) 225–256.
- R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer.10 (2001) 1–102.
- A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp.74 (2005) 1117–1138.
- M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys.12 (1941) 155–169.
- C. Chavant and A. Millard, Simulation d'excavation en comportement hydro-mécanique fragile. Technical report, EDF R&D/AMA and CEA/DEN/SEMT (2007) . URIhttp://www.gdrmomas.org/ex_qualifications.html
- Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp.73 (2004) 1167–1193.
- P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 (1975) 77–84.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal.28 (1991) 43–77.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in Ɩ∞Ɩ2 and Ɩ∞Ɩ∞. SIAM J. Numer. Anal.32 (1995) 706–740.
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences159. Springer-Verlag, New York (2004).
- O. Lakkis and Ch. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp.75 (2006) 1627–1658.
- Ch. Makridakis and R.H. Nochetto, Ellitpic reconstruction and a posteriori error estimates for elliptic problems. SIAM J. Numer. Anal.41 (2003) 1585–1594.
- S. Meunier, Analyse d'erreur a posteriori pour les couplages hydro-mécaniques et mise en œuvre dans Code_Aster. Ph.D. Thesis, École nationale des ponts et chaussées, France (2007).
- M.A. Murad and A.F.D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem. Comput. Meth. Appl. Mech. Engrg.95 (1992) 359–382.
- M.A. Murad and A.F.D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem. Internat. J. Numer. Methods Engrg.37 (1994) 645–667.
- M.A. Murad, V. Thomée and A.F.D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem. SIAM J. Numer. Anal.33 (1996) 1065–1083.
- M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg.167 (1998) 223–237.
- R.L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483–493.
- R.E. Showalter, Diffusion in deformable media. IMA Volumes in Mathematics and its Applications131 (2000) 115–130.
- R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl.251 (2000) 310–340.
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997).
- R. Verfürth, A posteriori error estimations and adaptative mesh-refinement techniques. J. Comput. Appl. Math.50 (1994) 67–83.
- R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Chichester, UK (1996).
- R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo40 (2003) 195–212.
- K. von Terzaghi, Theoretical Soil Mechanics. Wiley, New York (1936).
- M. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal.10 (1973) 723–759.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.