The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In analogy to the analyticity condition , t > 0, for a continuous time semigroup , a bounded operator T is called analytic if the discrete time semigroup satisfies , n ∈ ℕ. We generalize O. Nevanlinna’s characterization of powerbounded and analytic operators T to the following perturbation result: if S is a perturbation of T such that is small enough for some , then the type of the semigroup also controls the analyticity of S in the sense that , n ∈ ℕ. As an application we generalize...
We consider the maximal regularity problem for the discrete time evolution equation for all n ∈ ℕ₀, u₀ = 0, where T is a bounded operator on a UMD space X. We characterize the discrete maximal regularity of T by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup and of the resolvent R(λ,T), secondly by the maximal regularity of the continuous time evolution equation u’(t) - Au(t) = f(t) for all t > 0, u(0) = 0, where A:= T - I. By recent results of...
Hörmander’s famous Fourier multiplier theorem ensures the -boundedness of whenever for some , where we denote by the set of functions satisfying the Hörmander condition for derivatives. Spectral multiplier theorems are extensions of this result to more general operators and yield the -boundedness of provided for some sufficiently large. The harmonic oscillator shows that in general is not sufficient even if has a heat kernel satisfying gaussian estimates. In this paper,...
Download Results (CSV)