The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograph, and S is a signature for G. While it is known that many common families of graphs are autographs, and that infinitely many graphs are not autographs, a non-autograph has never been exhibited. In this...
CONTENTSPreface......................................................................................................................................................... 5ABSTRACT LOGICS (by D. J. Brown and E. Suszko)Introduction.................................................................................................................................................. 9I. Elementary properties of closure systems and closure operations............................................. 10II. Some properties...
Download Results (CSV)