The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On approach regions for the conjugate Poisson integral and singular integrals

S. FerrandoR. JonesK. Reinhold — 1996

Studia Mathematica

Let ũ denote the conjugate Poisson integral of a function f L p ( ) . We give conditions on a region Ω so that l i m ( v , ε ) ( 0 , 0 ) ( v , ε ) Ω ũ ( x + v , ε ) = H f ( x ) , the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that s u p ( v , r ) Ω | ʃ | t | > r k ( x + v - t ) f ( t ) d t | is a bounded operator on L p , 1 < p < ∞, and is weak (1,1).

Page 1

Download Results (CSV)