The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

The dual space of precompact groups

M. FerrerS. HernándezV. Uspenskij — 2013

Commentationes Mathematicae Universitatis Carolinae

For any topological group G the dual object G ^ is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. If G is compact, G ^ is discrete. In an earlier paper we proved that G ^ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when G is an almost metrizable precompact group.

Page 1

Download Results (CSV)