The dual space of precompact groups
M. Ferrer; S. Hernández; V. Uspenskij
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 239-244
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFerrer, M., Hernández, S., and Uspenskij, V.. "The dual space of precompact groups." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 239-244. <http://eudml.org/doc/252527>.
@article{Ferrer2013,
abstract = {For any topological group $G$ the dual object $\widehat\{G\}$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat\{G\}$ is discrete. In an earlier paper we proved that $\widehat\{G\}$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group.},
author = {Ferrer, M., Hernández, S., Uspenskij, V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact group; precompact group; representation; Pontryagin--van Kampen duality; compact-open topology; Fell dual space; Fell topology; Kazhdan property (T); precompact group; Fell dual space},
language = {eng},
number = {2},
pages = {239-244},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The dual space of precompact groups},
url = {http://eudml.org/doc/252527},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Ferrer, M.
AU - Hernández, S.
AU - Uspenskij, V.
TI - The dual space of precompact groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 239
EP - 244
AB - For any topological group $G$ the dual object $\widehat{G}$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat{G}$ is discrete. In an earlier paper we proved that $\widehat{G}$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group.
LA - eng
KW - compact group; precompact group; representation; Pontryagin--van Kampen duality; compact-open topology; Fell dual space; Fell topology; Kazhdan property (T); precompact group; Fell dual space
UR - http://eudml.org/doc/252527
ER -
References
top- Arhangel'skii A., Tkachenko M., Topological Groups and Related Structures, Atlantis Press, Amsterdam-Paris, 2008. MR2433295
- Aussenhofer L., Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Dissertation, Tübingen 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999). Zbl0953.22001MR1736984
- Bekka B., de la Harpe P., Valette A., Kazhdan’s Property , Cambridge University Press, Cambridge, 2008.
- Chasco M.J., 10.1007/s000130050160, Arch. Math. 70 (1998), 22–28. Zbl0899.22001MR1487450DOI10.1007/s000130050160
- Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J., 10.1023/B:CMAJ.0000042588.07352.99, Czechoslovak Math. J. 54 (129) (2004), 509–533. Zbl1080.22500MR2059270DOI10.1023/B:CMAJ.0000042588.07352.99
- Dikranjan D., Shakhmatov D., 10.1016/j.jmaa.2009.07.038, J. Math. Anal. Appl. 363 (2010), no. 1, 42–48. Zbl1178.22005MR2559039DOI10.1016/j.jmaa.2009.07.038
- Dixmier J., Les C-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. Zbl0288.46055MR0246136
- Engelking R., General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Fell J.M.G., The dual spaces of -algebras, Trans. Amer. Math. Soc. 94 (1960), 365–403. Zbl0090.32803MR0146681
- Fell J.M.G., 10.4153/CJM-1962-016-6, Canad. J. Math. 14 (1962), 237–268. Zbl0195.42201MR0150241DOI10.4153/CJM-1962-016-6
- Ferrer M.V., Hernández S., Dual topologies on groups, Topology Appl.(to appear). MR2921826
- Ferrer M.V., Hernández S., Uspenskij V., Precompact groups and property , arXiv:1112.1350. MR3045168
- de la Harpe P., Valette A., La propriété de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989. Zbl0759.22001
- Hernández S., Macario S., Trigos-Arrieta F.J., 10.1016/j.jmaa.2008.07.065, J. Math. Anal. Appl. 348 (2008), no. 2, 834–842. Zbl1156.22002MR2446038DOI10.1016/j.jmaa.2008.07.065
- Hofmann K.H., Morris S.A., The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert, De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin-New York, 2006. MR2261490
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.