The dual space of precompact groups

M. Ferrer; S. Hernández; V. Uspenskij

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 239-244
  • ISSN: 0010-2628

Abstract

top
For any topological group G the dual object G ^ is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. If G is compact, G ^ is discrete. In an earlier paper we proved that G ^ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when G is an almost metrizable precompact group.

How to cite

top

Ferrer, M., Hernández, S., and Uspenskij, V.. "The dual space of precompact groups." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 239-244. <http://eudml.org/doc/252527>.

@article{Ferrer2013,
abstract = {For any topological group $G$ the dual object $\widehat\{G\}$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat\{G\}$ is discrete. In an earlier paper we proved that $\widehat\{G\}$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group.},
author = {Ferrer, M., Hernández, S., Uspenskij, V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact group; precompact group; representation; Pontryagin--van Kampen duality; compact-open topology; Fell dual space; Fell topology; Kazhdan property (T); precompact group; Fell dual space},
language = {eng},
number = {2},
pages = {239-244},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The dual space of precompact groups},
url = {http://eudml.org/doc/252527},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Ferrer, M.
AU - Hernández, S.
AU - Uspenskij, V.
TI - The dual space of precompact groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 239
EP - 244
AB - For any topological group $G$ the dual object $\widehat{G}$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat{G}$ is discrete. In an earlier paper we proved that $\widehat{G}$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group.
LA - eng
KW - compact group; precompact group; representation; Pontryagin--van Kampen duality; compact-open topology; Fell dual space; Fell topology; Kazhdan property (T); precompact group; Fell dual space
UR - http://eudml.org/doc/252527
ER -

References

top
  1. Arhangel'skii A., Tkachenko M., Topological Groups and Related Structures, Atlantis Press, Amsterdam-Paris, 2008. MR2433295
  2. Aussenhofer L., Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Dissertation, Tübingen 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999). Zbl0953.22001MR1736984
  3. Bekka B., de la Harpe P., Valette A., Kazhdan’s Property ( T ) , Cambridge University Press, Cambridge, 2008. 
  4. Chasco M.J., 10.1007/s000130050160, Arch. Math. 70 (1998), 22–28. Zbl0899.22001MR1487450DOI10.1007/s000130050160
  5. Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J., 10.1023/B:CMAJ.0000042588.07352.99, Czechoslovak Math. J. 54 (129) (2004), 509–533. Zbl1080.22500MR2059270DOI10.1023/B:CMAJ.0000042588.07352.99
  6. Dikranjan D., Shakhmatov D., 10.1016/j.jmaa.2009.07.038, J. Math. Anal. Appl. 363 (2010), no. 1, 42–48. Zbl1178.22005MR2559039DOI10.1016/j.jmaa.2009.07.038
  7. Dixmier J., Les C * -algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. Zbl0288.46055MR0246136
  8. Engelking R., General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  9. Fell J.M.G., The dual spaces of C * -algebras, Trans. Amer. Math. Soc. 94 (1960), 365–403. Zbl0090.32803MR0146681
  10. Fell J.M.G., 10.4153/CJM-1962-016-6, Canad. J. Math. 14 (1962), 237–268. Zbl0195.42201MR0150241DOI10.4153/CJM-1962-016-6
  11. Ferrer M.V., Hernández S., Dual topologies on groups, Topology Appl.(to appear). MR2921826
  12. Ferrer M.V., Hernández S., Uspenskij V., Precompact groups and property ( T ) , arXiv:1112.1350. MR3045168
  13. de la Harpe P., Valette A., La propriété ( T ) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989. Zbl0759.22001
  14. Hernández S., Macario S., Trigos-Arrieta F.J., 10.1016/j.jmaa.2008.07.065, J. Math. Anal. Appl. 348 (2008), no. 2, 834–842. Zbl1156.22002MR2446038DOI10.1016/j.jmaa.2008.07.065
  15. Hofmann K.H., Morris S.A., The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert, De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin-New York, 2006. MR2261490

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.