The dual group of a dense subgroup
Throughout this abstract, is a topological Abelian group and is the space of continuous homomorphisms from into the circle group in the compact-open topology. A dense subgroup of is said to determine if the (necessarily continuous) surjective isomorphism given by is a homeomorphism, and is determined if each dense subgroup of determines . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is...