The dual group of a dense subgroup
William Wistar Comfort; S. U. Raczkowski; F. Javier Trigos-Arrieta
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 2, page 509-533
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topComfort, William Wistar, Raczkowski, S. U., and Trigos-Arrieta, F. Javier. "The dual group of a dense subgroup." Czechoslovak Mathematical Journal 54.2 (2004): 509-533. <http://eudml.org/doc/30879>.
@article{Comfort2004,
abstract = {Throughout this abstract, $G$ is a topological Abelian group and $\widehat\{G\}$ is the space of continuous homomorphisms from $G$ into the circle group $\mathbb \{T\}$ in the compact-open topology. A dense subgroup $D$ of $G$ is said to determine $G$ if the (necessarily continuous) surjective isomorphism $\widehat\{G\}\twoheadrightarrow \widehat\{D\}$ given by $h\mapsto h\big |D$ is a homeomorphism, and $G$ is determined if each dense subgroup of $G$ determines $G$. The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is determined. The authors offer several related results, including these. 1. There are (many) nonmetrizable, noncompact, determined groups. 2. If the dense subgroup $D_i$ determines $G_i$ with $G_i$ compact, then $\oplus _iD_i$ determines $\Pi _i G_i$. In particular, if each $G_i$ is compact then $\oplus _i G_i$ determines $\Pi _i G_i$. 3. Let $G$ be a locally bounded group and let $G^+$ denote $G$ with its Bohr topology. Then $G$ is determined if and only if $\{G^+\}$ is determined. 4. Let $\mathop \{\mathrm \{n\}on\}(\{\mathcal \{N\}\})$ be the least cardinal $\kappa $ such that some $X \subseteq \{\mathbb \{T\}\}$ of cardinality $\kappa $ has positive outer measure. No compact $G$ with $w(G)\ge \mathop \{\mathrm \{n\}on\}(\{\mathcal \{N\}\})$ is determined; thus if $\mathop \{\mathrm \{n\}on\}(\{\mathcal \{N\}\})=\aleph _1$ (in particular if CH holds), an infinite compact group $G$ is determined if and only if $w(G)=\omega $. Question. Is there in ZFC a cardinal $\kappa $ such that a compact group $G$ is determined if and only if $w(G)<\kappa $? Is $\kappa =\mathop \{\mathrm \{n\}on\}(\{\mathcal \{N\}\})$? $\kappa =\aleph _1$?},
author = {Comfort, William Wistar, Raczkowski, S. U., Trigos-Arrieta, F. Javier},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bohr compactification; Bohr topology; character; character group; Außenhofer-Chasco Theorem; compact-open topology; dense subgroup; determined group; duality; metrizable group; reflexive group; reflective group; Bohr compactification; Bohr topology; character; character group},
language = {eng},
number = {2},
pages = {509-533},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The dual group of a dense subgroup},
url = {http://eudml.org/doc/30879},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Comfort, William Wistar
AU - Raczkowski, S. U.
AU - Trigos-Arrieta, F. Javier
TI - The dual group of a dense subgroup
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 509
EP - 533
AB - Throughout this abstract, $G$ is a topological Abelian group and $\widehat{G}$ is the space of continuous homomorphisms from $G$ into the circle group $\mathbb {T}$ in the compact-open topology. A dense subgroup $D$ of $G$ is said to determine $G$ if the (necessarily continuous) surjective isomorphism $\widehat{G}\twoheadrightarrow \widehat{D}$ given by $h\mapsto h\big |D$ is a homeomorphism, and $G$ is determined if each dense subgroup of $G$ determines $G$. The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is determined. The authors offer several related results, including these. 1. There are (many) nonmetrizable, noncompact, determined groups. 2. If the dense subgroup $D_i$ determines $G_i$ with $G_i$ compact, then $\oplus _iD_i$ determines $\Pi _i G_i$. In particular, if each $G_i$ is compact then $\oplus _i G_i$ determines $\Pi _i G_i$. 3. Let $G$ be a locally bounded group and let $G^+$ denote $G$ with its Bohr topology. Then $G$ is determined if and only if ${G^+}$ is determined. 4. Let $\mathop {\mathrm {n}on}({\mathcal {N}})$ be the least cardinal $\kappa $ such that some $X \subseteq {\mathbb {T}}$ of cardinality $\kappa $ has positive outer measure. No compact $G$ with $w(G)\ge \mathop {\mathrm {n}on}({\mathcal {N}})$ is determined; thus if $\mathop {\mathrm {n}on}({\mathcal {N}})=\aleph _1$ (in particular if CH holds), an infinite compact group $G$ is determined if and only if $w(G)=\omega $. Question. Is there in ZFC a cardinal $\kappa $ such that a compact group $G$ is determined if and only if $w(G)<\kappa $? Is $\kappa =\mathop {\mathrm {n}on}({\mathcal {N}})$? $\kappa =\aleph _1$?
LA - eng
KW - Bohr compactification; Bohr topology; character; character group; Außenhofer-Chasco Theorem; compact-open topology; dense subgroup; determined group; duality; metrizable group; reflexive group; reflective group; Bohr compactification; Bohr topology; character; character group
UR - http://eudml.org/doc/30879
ER -
References
top- 10.1007/BF01350719, Math. Ann. 177 (1968), 273–277. (1968) MR0232182DOI10.1007/BF01350719
- Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, PhD. thesis, Universität Tübingen, 1998. (1998) MR1736984
- Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Dissertationes Math. Vol. CCCLXXXIV, Warszawa, 1998. (1998) MR1736984
- 10.1007/BF01456956, Ann. Math. 264 (1983), 485–493. (1983) Zbl0502.22010MR0716262DOI10.1007/BF01456956
- Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics Vol. 1466, Springer-Verlag, Berlin, 1991. (1991) MR1119302
- Set Theory: on the Structure of the Real Line, A. K. Peters, Wellesley, 1990, pp. 546. (1990) MR1350295
- 10.2140/pjm.1985.116.217, Pacific J. Math. 116 (1985), 217–241. (1985) MR0771633DOI10.2140/pjm.1985.116.217
- General Topology, Part 2, Addison-Wesley Publishing Company, Reading, Massachusetts, 1966, pp. 363. (1966) Zbl0301.54002MR0205211
- 10.1007/s000130050160, Archiv der Math. 70 (1998), 22–28. (1998) Zbl0899.22001MR1487450DOI10.1007/s000130050160
- Set Theory for the Working Mathematician, London Mathematical Society Student Texts, Vol. 39 Cambridge University Press, Cambridge, 1997. (1997) Zbl0938.03067MR1475462
- 10.1515/form.1994.6.323, Forum Math. 6 (1994), 323–337. (1994) MR1269843DOI10.1515/form.1994.6.323
- 10.1007/BF02571718, Math. Z. 215 (1994), 337–346. (1994) MR1262521DOI10.1007/BF02571718
- 10.4064/fm-55-3-283-291, Fund. Math. 55 (1964), 283–291. (1964) MR0169940DOI10.4064/fm-55-3-283-291
- 10.2140/pjm.1973.49.33, Pacific J. Math. 49 (1973), 33–44. (1973) MR0372104DOI10.2140/pjm.1973.49.33
- The Bohr compactification, modulo a metrizable subgroup, Fund. Math. 143 (1993), 119–136. (1993) MR1240629
- 10.1016/0166-8641(91)90096-5, Topology Appl. 41 (1991), 3–15. (1991) MR1129694DOI10.1016/0166-8641(91)90096-5
- Topological Groups (Characters, Dualities and Minimal Group Topologies). Monographs and Textbooks in Pure and Applied Mathematics 130, Marcel Dekker, Inc., New York-Basel, 1990. (1990) MR1015288
- 10.1016/0166-8641(90)90090-O, Topology Appl. 34 (1990), 69–91. (1990) Zbl0696.22003MR1035461DOI10.1016/0166-8641(90)90090-O
- General Topology, Heldermann Verlag, Berlin, 1989. (1989) Zbl0684.54001MR1039321
- 10.7146/math.scand.a-10907, Math. Scand. 23 (1968), 169–170. (1968) MR0251457DOI10.7146/math.scand.a-10907
- Consequences of Martin’s Axiom. Cambridge Tracts in Mathematics, Vol. 84, Cambridge University Press, Cambridge, 1984. (1984) MR0780933
- Infinite Abelian Groups, Vol. I, Academic Press, New York-San Francisco-London, 1970. (1970) Zbl0209.05503MR0255673
- On the completion of a MAP group, In: Papers on General Topology and Applications. Proc. Eleventh (August, 1995) summer topology conference at the University of Maine. Annals New York Acad. Sci. Vol. 806, S. Andima, R. C. Flagg, G. Itzkowitz, Yung Kong, R. Kopperman, and P. Misra (eds.), New York, 1996, pp. 164–168. (1996) MR1429651
- 10.4153/CJM-1962-017-3, Canad. J. Math. 14 (1962), 269–276. (1962) Zbl0109.02001MR0155923DOI10.4153/CJM-1962-017-3
- Remarks on the cardinality of compact spaces and their Lindelöf subspaces, Proc. Amer. Math. Soc. 59 (1976), 146–148. (1976) MR0423283
- Abstract Harmonic Analysis, Vol. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 115, Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. (1963) MR0551496
- 10.1007/BF01360918, Math. Ann. 160 (1965), 171–194. (1965) MR0186751DOI10.1007/BF01360918
- Real and Abstract Analysis. Graduate Texts in Mathematics Vol. 25, Springer-Verlag, New York, 1965. (1965)
- 10.1007/BFb0069778, Springer-Verlag, Berlin-Heidelberg-New York, 1970. (1970) MR0274648DOI10.1007/BFb0069778
- Non-productive duality properties of topological groups, Topology Proc. 25 (2002), 207–216. (2002) MR1925684
- A study of topological Abelian groups based on norm space theory, PhD. thesis, University of Maryland, College Park, 1967. (1967)
- Personal communication, November 20, 2000, .
- Set Theory, Academic Press, Inc., San Diego, 1978. (1978) Zbl0419.03028MR0506523
- 10.1215/S0012-7094-48-01557-9, Duke Math. J. 15 (1948), 649–658. (1948) MR0026999DOI10.1215/S0012-7094-48-01557-9
- 10.1215/S0012-7094-50-01737-6, Duke Math. J. 15 (1950), 419–435. (1950) MR0049906DOI10.1215/S0012-7094-50-01737-6
- Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1994. (1994) MR1321597
- 10.1007/BF01361183, Math. Ann. 153 (1964), 150–162. (1964) MR0185417DOI10.1007/BF01361183
- Set Theory, An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980. (1980) MR0597342
- 10.1007/BF02988875, Abhandlungen Mathem. Seminar Univ. Hamburg 19 (1955), 244–263. (1955) Zbl0065.01501MR0068545DOI10.1007/BF02988875
- Martin’s axiom and topological spaces, Doklady Akad. Nauk SSSR 213 (1973), 532–535. (Russian) (1973)
- -groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551–561. (1970) Zbl0229.22012MR0270070
- Totally bounded groups, PhD. thesis, Wesleyan University, Middletown, 1998. (1998)
- Dense subgroups of locally compact groups, Colloq. Math. 35 (1976), 289–292. (1976) MR0417325
- 10.1007/BF01112440, Math. Z. 102 (1967), 225–235. (1967) Zbl0153.04302MR0220000DOI10.1007/BF01112440
- Zur Struktur des Verbandes der Gruppentopologien, PhD. thesis, Universität Hannover, Hannover, 1983. (English) (1983) Zbl0547.22004
- The number of -precompact group topologies on free groups, Proc. Amer. Math. Soc. 95 (1985), 315–319. (1985) MR0801346
- 10.1090/S0002-9939-1993-1132422-4, Proc. Amer. Math. Soc. 117 (1993), 1195–1200. (1993) MR1132422DOI10.1090/S0002-9939-1993-1132422-4
- Locally convex spaces as subgroups of products of locally compact Abelian groups, Math. Japon. 46 (1997), 217–222. (1997) MR1479817
- Uniform Structures on Topological Groups and Their Quotients, McGraw-Hill International Book Company, New York-Toronto, 1981. (1981) MR0644485
- Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3, Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1986, pp. 294. (1986) MR0342978
- 10.1512/iumj.1977.26.26079, Indiana Univ. Math. J. 26 (1977), 981–986. (1977) Zbl0344.46033MR0458134DOI10.1512/iumj.1977.26.26079
- 10.2307/1969798, Ann. Math. 56 (1952), 248–253. (1952) MR0049479DOI10.2307/1969798
- Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math. 9 (1950), 131–140. (1950) MR0039719
- A Course on Borel Sets, Graduate Texts in Mathematics, Vol. 180, Springer-Verlag, New York-Berlin-Heildelberg, 1998. (1998) Zbl0903.28001MR1619545
- 10.4064/fm-1-1-93-104, Fund. Math. 1 (1920), 93–104. (1920) DOI10.4064/fm-1-1-93-104
- An elementary proof of Steinhaus’ theorem, Proc. Amer. Math. Soc. 36 (1972), 308. (1972) MR0308368
- [unknown], Personal Communication, August, 2001.
- Pseudocompactness on groups, In: General Topology and Applications, S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman, and A. R. Todd (eds.), Marcel Dekker, Inc., New York-Basel-Hong Kong, 1991, pp. 369–378. (1991) Zbl0777.22003MR1142814
- 10.1016/0022-4049(91)90018-W, J. Pure and Applied Algebra 70 (1991), 199–210. (1991) Zbl0724.22003MR1100517DOI10.1016/0022-4049(91)90018-W
- Small uncountable cardinals and topology, In: Open Problems in Topology, Chapter 11, J. van Mill, G. M. Reed (eds.), Elsevier Science Publishers (B. V.), Amsterdam-New York-Oxford-Tokyo, 1990. (1990) MR1078647
- 10.2140/pjm.1968.26.193, Pacific J. Math. 26 (1968), 193–196. (1968) Zbl0162.44102MR0232190DOI10.2140/pjm.1968.26.193
- Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Publ. Math. Univ. Strasbourg, Vol. 551, (1938), Hermann & Cie, Paris. (1938)
- L’Integration dans les Groupes Topologiques et ses Applications. Actualités Scientifiques et Industrielle, Publ. Math. Inst. Strasbourg, Hermann, Paris, 1951. (1951)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.