The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Integro-differential-difference equations associated with the Dunkl operator and entire functions

Néjib Ben SalemSamir Kallel — 2004

Commentationes Mathematicae Universitatis Carolinae

In this work we consider the Dunkl operator on the complex plane, defined by 𝒟 k f ( z ) = d d z f ( z ) + k f ( z ) - f ( - z ) z , k 0 . We define a convolution product associated with 𝒟 k denoted * k and we study the integro-differential-difference equations of the type μ * k f = n = 0 a n , k 𝒟 k n f , where ( a n , k ) is a sequence of complex numbers and μ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type.

Page 1

Download Results (CSV)