Si dà una condizione sufficiente ad assicurare il carattere fortemente oscillatorio dei sistemi ellittici del tipo Con questo risultato si estendono vari criteri noti relativi al caso di una sola equazione.
MSC 2010: 26A33, 33E12, 33C60, 35R11
In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Gli Autori considerano l'equazione con , continue in , , continue in e sotto opportune condizioni per , , provano che tutte le soluzioni della (1) sono oscillanti.
We show that the first homology group of a locally connected compact metric space is either uncountable or finitely generated. This is related to Shelah's well-known result (1988) which shows that the fundamental group of such a space satisfies a similar condition. We give an example of such a space whose fundamental group is uncountable but whose first homology is trivial, showing that our result does not follow from Shelah's. We clarify a claim made by Pawlikowski (1998) and offer a proof of the...
Download Results (CSV)