The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Deficiency of forests

An edge-magic total labeling of an (n,m)-graph G = (V,E) is a one to one map λ from V(G) ∪ E(G) onto the integers {1,2,…,n + m} with the property that there exists an integer constant c such that λ(x) + λ(y) + λ(xy) = c for any xy ∈ E(G). It is called super edge-magic total labeling if λ (V(G)) = {1,2,…,n}. Furthermore, if G has no super edge-magic total labeling, then the minimum number of vertices added to G to have a super edge-magic total labeling, called super edge-magic deficiency of a graph...

Page 1

Download Results (CSV)