The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
If denotes the variety of irreducible plane curves of degree with exactly nodes as singularities, Diaz and Harris (1986) have conjectured that is a torsion group. In this note we study rational equivalence on some families of singular plane curves and we prove, in particular, that is a finite group, so that the conjecture holds for . Actually the order of is , the group being cyclic if is odd and the product of and a cyclic group of order if is even.
Download Results (CSV)