Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Semicopulæ

Fabrizio DuranteCarlo Sempi — 2005

Kybernetika

We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, t -norm.

Semicopulas: characterizations and applicability

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.

Copulas with given values on a horizontal and a vertical section

In this paper we study the set of copulas for which both a horizontal section and a vertical section have been given. We give a general construction for copulas of this type and we provide the lower and upper copulas with these sections. Symmetric copulas with given horizontal section are also discussed, as well as copulas defined on a grid of the unit square. Several examples are presented.

Page 1

Download Results (CSV)