The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Remarks on strongly Wright-convex functions

Nelson MerentesKazimierz NikodemSergio Rivas — 2011

Annales Polonici Mathematici

Some properties of strongly Wright-convex functions are presented. In particular it is shown that a function f:D → ℝ, where D is an open convex subset of an inner product space X, is strongly Wright-convex with modulus c if and only if it can be represented in the form f(x) = g(x)+a(x)+c||x||², x ∈ D, where g:D → ℝ is a convex function and a:X → ℝ is an additive function. A characterization of inner product spaces by strongly Wright-convex functions is also given.

Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu

Francy ArmaoDorota GłazowskaSergio RivasJessica Rojas — 2013

Open Mathematics

We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.

Page 1

Download Results (CSV)