Infinite divisibility of Smith matrices
Let f be an arithmetical function. A set S = x₁,..., xₙ of n distinct positive integers is called multiple closed if y ∈ S whenever x|y|lcm(S) for any x ∈ S, where lcm(S) is the least common multiple of all elements in S. We show that for any multiple closed set S and for any divisor chain S (i.e. x₁|...|xₙ), if f is a completely multiplicative function such that (f*μ)(d) is a nonzero integer whenever d|lcm(S), then the matrix having f evaluated at the greatest common divisor of and as its...
Let be a finite subset of a partially ordered set . Let be an incidence function of . Let denote the matrix having evaluated at the meet of and as its -entry and denote the matrix having evaluated at the join of and as its -entry. The set is said to be meet-closed if for all . In this paper we get explicit combinatorial formulas for the determinants of matrices and on any meet-closed set . We also obtain necessary and sufficient conditions for the matrices...
Let f be an arithmetic function and S = {x1, …, xn} be a set of n distinct positive integers. By (f(xi, xj)) (resp. (f[xi, xj])) we denote the n × n matrix having f evaluated at the greatest common divisor (xi, xj) (resp. the least common multiple [xi, xj]) of x, and xj as its (i, j)-entry, respectively. The set S is said to be gcd closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n. In this paper, we give formulas for the determinants of the matrices (f(xi, xj)) and (f[xi, xj]) if S consists of multiple coprime...
Let be a set of distinct positive integers and an integer. Denote the power GCD (resp. power LCM) matrix on having the -th power of the greatest common divisor (resp. the -th power of the least common multiple ) as the -entry of the matrix by (resp. . We call the set an odd gcd closed (resp. odd lcm closed) set if every element in is an odd number and (resp. ) for all . In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that...
Page 1