Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety V, there is...
A hypersubstitution of a fixed type τ maps n-ary operation symbols of the type to n-ary terms of the type. Such a mapping induces a unique mapping defined on the set of all terms of type t. The kernel of this induced mapping is called the kernel of the hypersubstitution, and it is a fully invariant congruence relation on the (absolutely free) term algebra of the considered type ([2]). If V is a variety of type τ, we consider the composition of the natural homomorphism with the mapping induced...
An inflation of an algebra is formed by adding a set of new elements to each element in the original or base algebra, with the stipulation that in forming products each new element behaves exactly like the element in the base algebra to which it is attached. Clarke and Monzo have defined the generalized inflation of a semigroup, in which a set of new elements is again added to each base element, but where the new elements are allowed to act like different elements of the base, depending on the context...
Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigroups), and study the complete sublattices of this lattice obtained through the Galois correspondence.
Download Results (CSV)