On restriction properties of multiplication operators.
It is proved that a separable Banach space X admits a representation as a sum (not necessarily direct) of two infinite-codimensional closed subspaces and if and only if it admits a representation as a sum (not necessarily direct) of two infinite-codimensional operator ranges. Suppose that a separable Banach space X admits a representation as above. Then it admits a representation such that neither of the operator ranges , contains an infinite-dimensional closed subspace if and only...
Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {x} ⊂ X una sucesión tal que {Tx} es ortogonal. Se estudian propiedades de {Tx} dependientes de propiedades de {x}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.
Page 1