The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On microlocal analyticity of solutions of first-order nonlinear PDE

Shif Berhanu — 2009

Annales de l’institut Fourier

We study the microlocal analyticity of solutions u of the nonlinear equation u t = f ( x , t , u , u x ) where f ( x , t , ζ 0 , ζ ) is complex-valued, real analytic in all its arguments and holomorphic in ( ζ 0 , ζ ) . We show that if the function u is a C 2 solution, σ Char L u and 1 i σ ( [ L u , L u ¯ ] ) < 0 or if u is a C 3 solution, σ Char L u , σ ( [ L u , L u ¯ ] ) = 0 , and σ ( [ L u , [ L u , L u ¯ ] ] ) 0 , then σ W F a u . Here W F a u denotes the analytic wave-front set of u and Char L u is the characteristic set of the linearized operator. When m = 1 , we prove a more general result involving the repeated brackets of L u and L u ¯ of any order.

Page 1

Download Results (CSV)