The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem

In this paper we prove an existence theorem for the Cauchy problem x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x 0 , t I α = [ 0 , α ] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of measures of weak noncompactness.

Page 1

Download Results (CSV)