The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem

Mieczysław Cichoń; Ireneusz Kubiaczyk; Sikorska-Nowak, Aneta Sikorska-Nowak, Aneta

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 279-289
  • ISSN: 0011-4642

Abstract

top
In this paper we prove an existence theorem for the Cauchy problem x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x 0 , t I α = [ 0 , α ] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of measures of weak noncompactness.

How to cite

top

Cichoń, Mieczysław, Kubiaczyk, Ireneusz, and Sikorska-Nowak, Aneta, Sikorska-Nowak, Aneta. "The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem." Czechoslovak Mathematical Journal 54.2 (2004): 279-289. <http://eudml.org/doc/30859>.

@article{Cichoń2004,
abstract = {In this paper we prove an existence theorem for the Cauchy problem \[ x^\{\prime \}(t) = f(t, x(t)), \quad x(0) = x\_0, \quad t \in I\_\{\alpha \} = [0, \alpha ] \] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function $f$ are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function $f$ satisfies some conditions expressed in terms of measures of weak noncompactness.},
author = {Cichoń, Mieczysław, Kubiaczyk, Ireneusz, Sikorska-Nowak, Aneta, Sikorska-Nowak, Aneta},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo-solution; Pettis integral; Henstock-Kurzweil integral; Cauchy problem; pseudo-solution; Pettis integral; Henstock-Kurzweil integral},
language = {eng},
number = {2},
pages = {279-289},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem},
url = {http://eudml.org/doc/30859},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Cichoń, Mieczysław
AU - Kubiaczyk, Ireneusz
AU - Sikorska-Nowak, Aneta, Sikorska-Nowak, Aneta
TI - The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 279
EP - 289
AB - In this paper we prove an existence theorem for the Cauchy problem \[ x^{\prime }(t) = f(t, x(t)), \quad x(0) = x_0, \quad t \in I_{\alpha } = [0, \alpha ] \] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function $f$ are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function $f$ satisfies some conditions expressed in terms of measures of weak noncompactness.
LA - eng
KW - pseudo-solution; Pettis integral; Henstock-Kurzweil integral; Cauchy problem; pseudo-solution; Pettis integral; Henstock-Kurzweil integral
UR - http://eudml.org/doc/30859
ER -

References

top
  1. 10.1016/0022-0396(77)90128-0, J.  Differential Equations 23 (1977), 224–243. (1977) Zbl0353.34044MR0432985DOI10.1016/0022-0396(77)90128-0
  2. Weak continuity properties of mappings and semi-groups, Proc. Royal Soc. Edinbourgh Sect.  A 72 (1979), 275–280. (1979) MR0397495
  3. Demicontinuity and weak sequential continuity of operators in the Lebesgue space, In: Proceedings of the 1st Polish Symposium on Nonlinear Analysis, Łódź, 1997, pp. 124–129. (1997) 
  4. Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Appl. Math. Vol  60, Marcel Dekker, New York-Basel, 1980. (1980) MR0591679
  5. On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262. (1977) MR0482402
  6. The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 35–40. (1992) Zbl0749.28007MR1173605
  7. Theory of Denjoy Integral and Some of Its Applications, , Tbilisi, 1987. (Russian) (1987) 
  8. 10.1016/0022-0396(88)90076-9, J.  Differential Equations 76 (1988), 286–293. (1988) Zbl0666.34041MR0969426DOI10.1016/0022-0396(88)90076-9
  9. On x ' = f ( t , x ) and Henstock-Kurzweil integrals, Differential Integral Equations 4 (1991), 861–868. (1991) MR1108065
  10. Weak solutions of differential equations in Banach spaces, Discuss. Math. Diff. Inclusions 15 (1995), 5–14. (1995) 
  11. 10.1007/BF01189827, Arch. Math. 63 (1994), 251–257. (1994) MR1287254DOI10.1007/BF01189827
  12. 10.1023/A:1013756111769, Acta Math. Hungar. 92 (2001), 75–82. (2001) MR1924251DOI10.1023/A:1013756111769
  13. 10.1006/jmaa.1998.6149, J.  Math. Anal. Appl. 229 (1999), 119–136. (1999) MR1664308DOI10.1006/jmaa.1998.6149
  14. Vector Measures. Math. Surveys, Vol.  15, Providence, Rhode Island, 1977. (1977) MR0453964
  15. 10.1090/S0002-9939-1981-0603606-8, Proc. Amer. Math. Soc. 82 (1981), 81–86. (1981) Zbl0506.28007MR0603606DOI10.1090/S0002-9939-1981-0603606-8
  16. 10.1215/ijm/1255988170, Illinois J.  Math. 34 (1990), 557–567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
  17. The Integrals of Lebesgue, Denjoy, Perron and Henstock, Providence, Rhode Island, 1994. (1994) Zbl0807.26004MR1288751
  18. 10.1216/rmjm/1181072923, Rocky Mountain J.  Math. 21 (1991), 923–949. (1991) Zbl0764.28008MR1138145DOI10.1216/rmjm/1181072923
  19. 10.4064/sm-92-1-73-91, Studia Math. 92 (1989), 73–91. (1989) Zbl0681.28006MR0984851DOI10.4064/sm-92-1-73-91
  20. The General Theory of Integration. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1991. (1991) MR1134656
  21. 10.1215/S0012-7094-74-04149-0, Duke Math.  J. 41 (1974), 437–442. (1974) MR0344624DOI10.1215/S0012-7094-74-04149-0
  22. On fixed point theorem for weakly sequentially continuous mappings, Discuss, Math. Diff. Inclusions 15 (1995), 15–20. (1995) MR1344524
  23. On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Pol. Math. 33 (1985), 607–614. (1985) Zbl0607.34055MR0849409
  24. Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math.  J. 7 (1957), 418–449. (1957) Zbl0090.30002MR0111875
  25. Nichtabsolut Konvergente Integrale. Teubner Texte zür Mathematik, Vol.  26, , Leipzig, 1980. (1980) MR0597703
  26. An existence theorem for weak solutions of differential equations in Banach spaces, In: Nonlinear Equations in Abstract Spaces, V. Laksmikantham (ed.), 1978, pp. 387–404. (1978) MR0502554
  27. Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989. (1989) Zbl0699.26004MR1050957
  28. 10.1016/S0893-9659(98)00133-5, Applied Mathematics Letters 12 (1999), 101–105. (1999) MR1663477DOI10.1016/S0893-9659(98)00133-5
  29. 10.1090/S0002-9947-1938-1501970-8, Trans. Amer. Math. Soc. 44 (1938), 277–304. (1938) Zbl0019.41603MR1501970DOI10.1090/S0002-9947-1938-1501970-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.