The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Recent developments in wavelet methods for the solution of PDE's

Silvia Bertoluzza — 2005

Bollettino dell'Unione Matematica Italiana

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.

The Mortar method in the wavelet context

Silvia BertoluzzaValérie Perrier — 2001

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...

The Mortar Method in the Wavelet Context

Silvia BertoluzzaValérie Perrier — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...

Page 1

Download Results (CSV)