Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On union curves and pseudogeodesics in a Finsler subspace from the standpoint of non-linear connections

U. P. SinghV. P. Singh — 1974

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

La teoria delle connessioni non-lineari negli spazi di Finsler è stata studiata da Vagner [1], Barthel [2], Kawaguchi [3] e Singh [4]. Scopo di questa Nota è lo studio di particolari sistemi di curve ("Union curves" e pseudogeodetiche) di un sottospazio dello spazio di Finsler.

Convolution theorems for starlike and convex functions in the unit disc

M. AnbuduraiR. ParvathamS. PonnusamyV. Singh — 2004

Annales Polonici Mathematici

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number...

Page 1

Download Results (CSV)