The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show a very general existence theorem for a complex Monge-Ampère type equation on hyperconvex domains.
Let be a compact Kähler manifold and be a smooth closed form of bidegree which is nonnegative and big. We study the classes of -plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight has fast growth at infinity, the corresponding functions are close to be bounded.
We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class . This is done by establishing...
Download Results (CSV)