A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum
We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities of the fluids and their velocity fields are prescribed at infinity: , . Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely , , .