A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum

Jens Frehse; Sonja Goj; Josef Málek

Applications of Mathematics (2005)

  • Volume: 50, Issue: 6, page 527-541
  • ISSN: 0862-7940

Abstract

top
We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities ρ i of the fluids and their velocity fields u ( i ) are prescribed at infinity: ρ i | = ρ i > 0 , u ( i ) | = 0 . Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely ρ i ρ i , u ( i ) 0 , i = 1 , 2 .

How to cite

top

Frehse, Jens, Goj, Sonja, and Málek, Josef. "A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum." Applications of Mathematics 50.6 (2005): 527-541. <http://eudml.org/doc/33236>.

@article{Frehse2005,
abstract = {We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities $\rho _i$ of the fluids and their velocity fields $u^\{(i)\}$ are prescribed at infinity: $\rho _i|_\{\infty \} = \rho _\{i \infty \} > 0$, $u^\{(i)\}|_\{\infty \} = 0$. Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely $\rho _i \equiv \rho _\{i \infty \}$, $u^\{(i)\} \equiv 0$, $i=1,2$.},
author = {Frehse, Jens, Goj, Sonja, Málek, Josef},
journal = {Applications of Mathematics},
keywords = {miscible mixture; compressible fluid; uniqueness; zero force; miscible mixture; compressible fluid; uniqueness; zero force},
language = {eng},
number = {6},
pages = {527-541},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum},
url = {http://eudml.org/doc/33236},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Frehse, Jens
AU - Goj, Sonja
AU - Málek, Josef
TI - A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 6
SP - 527
EP - 541
AB - We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities $\rho _i$ of the fluids and their velocity fields $u^{(i)}$ are prescribed at infinity: $\rho _i|_{\infty } = \rho _{i \infty } > 0$, $u^{(i)}|_{\infty } = 0$. Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely $\rho _i \equiv \rho _{i \infty }$, $u^{(i)} \equiv 0$, $i=1,2$.
LA - eng
KW - miscible mixture; compressible fluid; uniqueness; zero force; miscible mixture; compressible fluid; uniqueness; zero force
UR - http://eudml.org/doc/33236
ER -

References

top
  1. 10.1007/BF01393835, Invent. Math. 98 (1989), 511–547. (1989) MR1022305DOI10.1007/BF01393835
  2. 10.1007/PL00000977, J.  Math. Fluid Mech. 3 (2001), 393–408. (2001) Zbl1007.35054MR1867888DOI10.1007/PL00000977
  3. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Commentat. Math. Univ. Carol. 42 (2001), 83–98. (2001) Zbl1115.35096MR1825374
  4. Dynamics of Viscous Compressible Fluids, Oxford University Press, New York, 2004. (2004) Zbl1080.76001MR2040667
  5. 10.1007/s002290050089, Manuscr. Math. 97 (1998), 109–116. (1998) MR1642646DOI10.1007/s002290050089
  6. A Stokes-like system for mixtures, In: Nonlinear Problems in Mathematical Physics and Related Topics  II. International Mathematical Series, M. Sh.  Birman, S.  Hildebrandt, V. A.  Solonnikov, and N. N.  Uraltseva (eds.), Kluwer, New York, 2002, pp. 119–136. (2002) MR1971993
  7. Existence of solutions to a Stokes-like system for mixtures, SIAM J.  Math. Anal. 36 (2005), 1259–1281. (2005) MR2139449
  8. 10.1016/0020-7225(65)90046-7, Internat. J.  Engrg. Sci. 3 (1965), 231–241. (1965) MR0186267DOI10.1016/0020-7225(65)90046-7
  9. A unified procedure for construction of theories of deformable media. III.  Mixtures of interacting continua, Proc. Roy. Soc. London Ser.  A  448 (1995), 379–388. (1995) MR1327687
  10. On the existence and uniqueness theory for steady compressible viscous flow, In: Fundamental Directions in Mathematical Fluid Mechanics, G. P. Galdi et al. (eds.), Birkhäuser-Verlag, Basel, 2000, pp. 171–189. (2000) MR1799398
  11. Mathematical Topics in Fluid Mechanics. Vol.  2: Compressible Models, Oxford University Press, New York, 1998. (1998) Zbl0908.76004MR1637634
  12. Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole 3-D space), In: Theory of the Navier-Stokes Equations, J. G. Heywood et al. (eds.), World Sci. Publishing, River Edge, 1998, pp. 106–120. (1998) Zbl0934.76079MR1643029
  13. Mechanics of Mixtures, World Scientific Publishing, River Edge, 1995. (1995) MR1370661
  14. Mechanical basis of diffusion, J.  Chemical Physics 37 (1962), 2337. (1962) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.