Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The equidistribution of Fourier coefficients of half integral weight modular forms on the plane

Soufiane Mezroui — 2020

Czechoslovak Mathematical Journal

Let f = n = 1 a ( n ) q n S k + 1 / 2 ( N , χ 0 ) be a nonzero cuspidal Hecke eigenform of weight k + 1 2 and the trivial nebentypus χ 0 , where the Fourier coefficients a ( n ) are real. Bruinier and Kohnen conjectured that the signs of a ( n ) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies { a ( t n 2 ) } n , where t is a squarefree integer such that a ( t ) 0 . Let q and d be natural numbers such that ( d , q ) = 1 . In this work, we show that { a ( t n 2 ) } n is equidistributed over any arithmetic progression n d mod q .

Page 1

Download Results (CSV)