Existence and controllability for nondensely defined partial neutral functional differential inclusions
We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.