Old Friends Revisited; the Multifunctional Nature of Some Classical Functions.
We show that the Hölder exponent and the chirp exponent of a function can be prescribed simultaneously on a set of full measure, if they are both lower limits of continuous functions. We also show that this result is optimal: In general, Hölder and chirp exponents cannot be prescribed outside a set of Hausdorff dimension less than one. The direct part of the proof consists in an explicit construction of a function determined by its orthonormal wavelet coefficients; the optimality is the direct consequence...
We determine the Hölder regularity of Riemann's function at each point; we deduce from this analysis its spectrum of singularities, thus showing its multifractal nature.
In this paper we shall compare three notions of pointwise smoothness: the usual definition, J.M. Bony's two-microlocal spaces C , and the corresponding definition on the wavelet coefficients. The purpose is mainly to show that these two-microlocal spaces provide "good substitutes" for the pointwise Hölder regularity condition; they can be very precisely compared with this condition, they have more functional properties, and can be characterized by conditions on the wavelet coefficients....
Let be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with , and denoted by . We show how properties of are transferred into properties of . Applications are given in multifractal analysis.
The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces are constructed, leading to a notion of pointwise regularity with respect to E; the case corresponds to the usual Hölder regularity, and...
We consider the problem of controlling pointwise (by means of a time dependent Dirac measure supported by a given point) the motion of a vibrating plate Ω. Under general boundary conditions, including the special cases of simply supported or clamped plates, but of course excluding the cases where multiple eigenvalues exist for the biharmonic operator, we show the controlability of finite linear combinations of the eigenfunctions at any point of Ω where no eigenfunction vanishes at any time greater...
We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.
We study the Gaussian random fields indexed by R whose covariance is defined in all generality as the parametrix of an elliptic pseudo-differential operator with minimal regularity assumption on the symbol. We construct new wavelet bases adapted to these operators; the decomposition of the field in this corresponding basis yields its iterated logarithm law and its uniform modulus of continuity. We also characterize the local scalings of the fields in terms of the properties of the principal symbol...
Page 1