We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial -difference-differential equations is also presented.
This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...
Download Results (CSV)