On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.
Given an odd prime number , we characterize the partitions of with
parts for which there exist permutations of the set such that divides but does not divide . This happens if and only if the maximal number of equal parts of is less than . The question appeared when dealing with sums of -th powers of resolvents, in order to solve a Galois module structure problem.
Download Results (CSV)