The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Kloosterman sums for prime powers in -adic fields

Stanley J. Gurak — 2009

Journal de Théorie des Nombres de Bordeaux

Let K be a field of degree n over Q p , the field of rational p -adic numbers, say with residue degree f , ramification index e and differential exponent d . Let O be the ring of integers of K and P its unique prime ideal. The trace and norm maps for K / Q p are denoted T r and N , respectively. Fix q = p r , a power of a prime p , and let η be a numerical character defined modulo q and of order o ( η ) . The character η extends to the ring of p -adic integers p in the natural way; namely η ( u ) = η ( u ˜ ) , where u ˜ denotes the residue class...

Page 1

Download Results (CSV)