The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Representation theorem for convex effect algebras

Stanley P. GudderSylvia Pulmannová — 1998

Commentationes Mathematicae Universitatis Carolinae

Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.

Page 1

Download Results (CSV)