Representation theorem for convex effect algebras

Stanley P. Gudder; Sylvia Pulmannová

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 4, page 645-659
  • ISSN: 0010-2628

Abstract

top
Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.

How to cite

top

Gudder, Stanley P., and Pulmannová, Sylvia. "Representation theorem for convex effect algebras." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 645-659. <http://eudml.org/doc/248280>.

@article{Gudder1998,
abstract = {Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.},
author = {Gudder, Stanley P., Pulmannová, Sylvia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {effect algebras; convex structures; ordered linear spaces; effect algebras; convex structures; ordered linear spaces},
language = {eng},
number = {4},
pages = {645-659},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Representation theorem for convex effect algebras},
url = {http://eudml.org/doc/248280},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Gudder, Stanley P.
AU - Pulmannová, Sylvia
TI - Representation theorem for convex effect algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 645
EP - 659
AB - Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.
LA - eng
KW - effect algebras; convex structures; ordered linear spaces; effect algebras; convex structures; ordered linear spaces
UR - http://eudml.org/doc/248280
ER -

References

top
  1. Beltrametti E.G., Bugajski S., A classical extension of quantum mechanics, J. Phys. A: Math. Gen. 28 (1995), 3329-3343. (1995) Zbl0859.46049MR1344371
  2. Beltrametti E.G., Bugajski S., Quantum observables in classical frameworks, Internat. J. Theoret. Phys. 34 (1995), 1221-1229. (1995) Zbl0850.81019MR1353665
  3. Beltrametti E.G., Bugajski S., Effect algebras and statistical physical theories, to appear. Zbl0874.06009MR1449546
  4. Bugajski S., Fundamentals of fuzzy probability theory, Internat. J. Theoret. Phys. 35 (1996), 2229-2244. (1996) Zbl0872.60003MR1423402
  5. Bugajski S., Hellwig K.-E., Stulpe W., On fuzzy random variables and statistical maps, Rep. Math. Phys., to appear. Zbl1026.60501MR1617902
  6. Busch P., Grabowski M., Lahti P., Operational Quantum Physics, Springer-Verlag, Berlin, 1995. Zbl0863.60106MR1356220
  7. Busch P., Lahti P., Mittlestaedt P., The Quantum Theory of Measurement, Springer-Verlag, Berlin, 1991. MR1176754
  8. Cattaneo G., Nisticò G., Complete effect-preparation structures: attempt of a unification of two different approaches to axiomatic quantum mechanics, Nuovo Cimento 90B (1985), 161-175. (1985) MR0827914
  9. Davies E.B., Quantum Theory of Open Systems, Academic Press, London, 1976. Zbl0388.46044MR0489429
  10. Dvurečenskij A., Tensor products of difference posets, Trans. Amer. Math. Soc. 147 (1995), 1043-1057. (1995) MR1249874
  11. Dvurečenskij A., Pulmannová S., Difference posets, effects, and quantum measurements, Internat. J. Theoret. Phys. 33 (1994), 819-850. (1994) MR1286161
  12. Evans R., The Perception of Color, John Wiley, New York, 1974. 
  13. Foulis D., Bennett M.K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352. (1994) MR1304942
  14. Foulis D., Bennett M.K., Interval algebras and unsharp quantum logics, to appear. 
  15. Giuntini R., Greuling H., Toward a formal language for unsharp properties, Found. Phys. 19 (1989), 931-945. (1989) MR1013913
  16. Gudder S., Convexity and mixtures, SIAM Review 19 (1977), 221-240. (1977) Zbl0354.52001MR0433327
  17. Gudder S., Convex structures and operational quantum mechanics, Comm. Math. Phys. 29 (1973), 249-264. (1973) MR0342092
  18. Gudder S., Fuzzy probability theory, Demonstratio Math., to appear. Zbl0984.60001MR1623780
  19. Holevo A.S., Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982. Zbl0497.46053MR0681693
  20. Kôpka F., D-posets and fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 83-87. (1992) MR1230466
  21. Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) MR1290269
  22. Kraus K., States, Effects, and Operations, Springer-Verlag, Berlin, 1983. Zbl0545.46049MR0725167
  23. Ludwig G., Foundations of Quantum Mechanics, Springer-Verlag, Berlin, 1983. Zbl0574.46057MR0690770
  24. Stone M.H., Postulates for the barycentric calculus, Ann. Math. 29 (1949), 25-30. (1949) Zbl0037.25002MR0036014
  25. Thrall R.M., Coombs C.H., Davis R.L., Decision Processes, John Wiley, New York, 1954. Zbl0057.35603MR0066616
  26. von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. Zbl1112.91002MR0011937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.