Representation theorem for convex effect algebras
Stanley P. Gudder; Sylvia Pulmannová
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 4, page 645-659
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGudder, Stanley P., and Pulmannová, Sylvia. "Representation theorem for convex effect algebras." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 645-659. <http://eudml.org/doc/248280>.
@article{Gudder1998,
abstract = {Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.},
author = {Gudder, Stanley P., Pulmannová, Sylvia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {effect algebras; convex structures; ordered linear spaces; effect algebras; convex structures; ordered linear spaces},
language = {eng},
number = {4},
pages = {645-659},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Representation theorem for convex effect algebras},
url = {http://eudml.org/doc/248280},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Gudder, Stanley P.
AU - Pulmannová, Sylvia
TI - Representation theorem for convex effect algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 645
EP - 659
AB - Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.
LA - eng
KW - effect algebras; convex structures; ordered linear spaces; effect algebras; convex structures; ordered linear spaces
UR - http://eudml.org/doc/248280
ER -
References
top- Beltrametti E.G., Bugajski S., A classical extension of quantum mechanics, J. Phys. A: Math. Gen. 28 (1995), 3329-3343. (1995) Zbl0859.46049MR1344371
- Beltrametti E.G., Bugajski S., Quantum observables in classical frameworks, Internat. J. Theoret. Phys. 34 (1995), 1221-1229. (1995) Zbl0850.81019MR1353665
- Beltrametti E.G., Bugajski S., Effect algebras and statistical physical theories, to appear. Zbl0874.06009MR1449546
- Bugajski S., Fundamentals of fuzzy probability theory, Internat. J. Theoret. Phys. 35 (1996), 2229-2244. (1996) Zbl0872.60003MR1423402
- Bugajski S., Hellwig K.-E., Stulpe W., On fuzzy random variables and statistical maps, Rep. Math. Phys., to appear. Zbl1026.60501MR1617902
- Busch P., Grabowski M., Lahti P., Operational Quantum Physics, Springer-Verlag, Berlin, 1995. Zbl0863.60106MR1356220
- Busch P., Lahti P., Mittlestaedt P., The Quantum Theory of Measurement, Springer-Verlag, Berlin, 1991. MR1176754
- Cattaneo G., Nisticò G., Complete effect-preparation structures: attempt of a unification of two different approaches to axiomatic quantum mechanics, Nuovo Cimento 90B (1985), 161-175. (1985) MR0827914
- Davies E.B., Quantum Theory of Open Systems, Academic Press, London, 1976. Zbl0388.46044MR0489429
- Dvurečenskij A., Tensor products of difference posets, Trans. Amer. Math. Soc. 147 (1995), 1043-1057. (1995) MR1249874
- Dvurečenskij A., Pulmannová S., Difference posets, effects, and quantum measurements, Internat. J. Theoret. Phys. 33 (1994), 819-850. (1994) MR1286161
- Evans R., The Perception of Color, John Wiley, New York, 1974.
- Foulis D., Bennett M.K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352. (1994) MR1304942
- Foulis D., Bennett M.K., Interval algebras and unsharp quantum logics, to appear.
- Giuntini R., Greuling H., Toward a formal language for unsharp properties, Found. Phys. 19 (1989), 931-945. (1989) MR1013913
- Gudder S., Convexity and mixtures, SIAM Review 19 (1977), 221-240. (1977) Zbl0354.52001MR0433327
- Gudder S., Convex structures and operational quantum mechanics, Comm. Math. Phys. 29 (1973), 249-264. (1973) MR0342092
- Gudder S., Fuzzy probability theory, Demonstratio Math., to appear. Zbl0984.60001MR1623780
- Holevo A.S., Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982. Zbl0497.46053MR0681693
- Kôpka F., D-posets and fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 83-87. (1992) MR1230466
- Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) MR1290269
- Kraus K., States, Effects, and Operations, Springer-Verlag, Berlin, 1983. Zbl0545.46049MR0725167
- Ludwig G., Foundations of Quantum Mechanics, Springer-Verlag, Berlin, 1983. Zbl0574.46057MR0690770
- Stone M.H., Postulates for the barycentric calculus, Ann. Math. 29 (1949), 25-30. (1949) Zbl0037.25002MR0036014
- Thrall R.M., Coombs C.H., Davis R.L., Decision Processes, John Wiley, New York, 1954. Zbl0057.35603MR0066616
- von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. Zbl1112.91002MR0011937
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.