Finite utility on financial markets with asymmetric information and structure properties of the price dynamics
We consider the dynamic control problem of attaining a target position at a finite time T, while minimizing a linear-quadratic cost functional depending on the position and speed. We assume that the coefficients of the linear-quadratic cost functional are stochastic processes adapted to a Brownian filtration. We provide a probabilistic solution in terms of two coupled backward stochastic differential equations possessing a singularity at the terminal time T. We verify optimality of the candidate...
Page 1