The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix

Yana AlexievaStefan Ivanov — 1999

Archivum Mathematicum

Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures r 1 = r 2 = 0 , r 3 0 , which are not locally homogeneous, in general.

Extremals for the Sobolev inequality on the seven-dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem

Stefan IvanovIvan MinchevDimiter Vassilev — 2010

Journal of the European Mathematical Society

A complete solution to the quaternionic contact Yamabe problem on the seven-dimensional sphere is given. Extremals for the Sobolev inequality on the seven-dimensional Heisenberg group are explicitly described and the best constant in the L2 Folland–Stein embedding theorem is determined.

Page 1

Download Results (CSV)