The Dolbeault operator on Hermitian spin surfaces
Bodgan Alexandrov[1]; Gueo Grantcharov[2]; Stefan Ivanov[2]
- [1] Humboldt University, Institute for Mathematics, Rudower Chaussee 25, 10099 Berlin (Allemagne)
- [2] University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, 5 James Bourchier Blvd, 1126 Sofia (Bulgarie)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 1, page 221-235
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlexandrov, Bodgan, Grantcharov, Gueo, and Ivanov, Stefan. "The Dolbeault operator on Hermitian spin surfaces." Annales de l’institut Fourier 51.1 (2001): 221-235. <http://eudml.org/doc/115910>.
@article{Alexandrov2001,
abstract = {We prove the vanishing of the kernel of the Dolbeault operator of the square root of the
canonical line bundle of a compact Hermitian spin surface with positive scalar curvature.
We give lower estimates of the eigenvalues of this operator when the conformal scalar
curvature is non -negative.},
affiliation = {Humboldt University, Institute for Mathematics, Rudower Chaussee 25, 10099 Berlin (Allemagne); University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, 5 James Bourchier Blvd, 1126 Sofia (Bulgarie); University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, 5 James Bourchier Blvd, 1126 Sofia (Bulgarie)},
author = {Alexandrov, Bodgan, Grantcharov, Gueo, Ivanov, Stefan},
journal = {Annales de l’institut Fourier},
keywords = {hermitian surfaces; Dirac operator; Dolbeault operator; twistor spinors; Hermitian surface},
language = {eng},
number = {1},
pages = {221-235},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Dolbeault operator on Hermitian spin surfaces},
url = {http://eudml.org/doc/115910},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Alexandrov, Bodgan
AU - Grantcharov, Gueo
AU - Ivanov, Stefan
TI - The Dolbeault operator on Hermitian spin surfaces
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 221
EP - 235
AB - We prove the vanishing of the kernel of the Dolbeault operator of the square root of the
canonical line bundle of a compact Hermitian spin surface with positive scalar curvature.
We give lower estimates of the eigenvalues of this operator when the conformal scalar
curvature is non -negative.
LA - eng
KW - hermitian surfaces; Dirac operator; Dolbeault operator; twistor spinors; Hermitian surface
UR - http://eudml.org/doc/115910
ER -
References
top- V. Apostolov, J. Davidov, O. Mu¡karov, Self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 349 (1996), 3051-3063 Zbl0880.53053
- N. Aronszjan, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 35 (1957), 235-249 Zbl0084.30402MR92067
- M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology 3 (Suppl.1) (1964), 3-38 Zbl0146.19001MR167985
- H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistor and Killing spinors on Riemannian manifolds, 108 (1990), Humboldt Universität, Berlin Zbl0705.53004
- J.-M. Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), 681-699 Zbl0666.58042MR1006380
- C. Boyer, A note on hyperhermitian four manifolds, Proc. Amer. Math. Soc. 102 (1988), 157-164 Zbl0642.53073MR915736
- T. Friedrich, Der erste Eigenwert des Dirac operators einer kompakten Riemannischen Manningfaltigkeit nichtnegativer Skalarkrümung, Math. Nachrichten 97 (1980), 117-146 Zbl0462.53027MR600828
- T. Friedrich, The classification of -dimensional Kähler manifolds with small eigenvalue of the Dirac operator, Math. Ann. 295 (1993), 565-574 Zbl0798.53065MR1204838
- P. Gauduchon, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, Sér. A 285 (1977), 387-390 Zbl0362.53024MR470920
- P. Gauduchon, Fibrés hermitiens à endomorphisme de Ricci non négatif, Bul. Soc. Math. France 105 (1977), 113-140 Zbl0382.53045MR486672
- P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518 Zbl0523.53059MR742896
- P. Gauduchon, Hermitian connections and Dirac operators, Bol. U. M. I. Sér. VII XI-B, supl. 2 (1997), 257-289 Zbl0876.53015MR1456265
- O. Hijazi, Opérateurs de Dirac sur le variétés riemanniennes : minoration des valeurs propres, (1984)
- N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55 Zbl0284.58016MR358873
- K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom. 4 (1986), 291-325 Zbl0629.53058MR910548
- K.-D. Kirchberg, The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys. 7 (1990), 447-468 Zbl0734.53050MR1131907
- K.-D. Kirchberg, Properties of Kählerian twistor-spinors and vanishing theorems, Math. Ann. 293 (1992), 349-369 Zbl0735.53051MR1166126
- A. Moroianu, Structures de Weyl admettant des spineurs parallèles, Bull. Soc. Math. France 124 (1996), 685-695 Zbl0867.53013MR1432061
- M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997), 159-177 Zbl0893.53026MR1467652
- I. Vaisman, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl. 132 (1982), 1-18 Zbl0512.53058MR696036
- M. Wang, Parallel spinors and parallel forms, Ann. Glob. Anal. Geom. 7 (1989), 59-68 Zbl0688.53007MR1029845
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.