The Dolbeault operator on Hermitian spin surfaces

Bodgan Alexandrov[1]; Gueo Grantcharov[2]; Stefan Ivanov[2]

  • [1] Humboldt University, Institute for Mathematics, Rudower Chaussee 25, 10099 Berlin (Allemagne)
  • [2] University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, 5 James Bourchier Blvd, 1126 Sofia (Bulgarie)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 1, page 221-235
  • ISSN: 0373-0956

Abstract

top
We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.

How to cite

top

Alexandrov, Bodgan, Grantcharov, Gueo, and Ivanov, Stefan. "The Dolbeault operator on Hermitian spin surfaces." Annales de l’institut Fourier 51.1 (2001): 221-235. <http://eudml.org/doc/115910>.

@article{Alexandrov2001,
abstract = {We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.},
affiliation = {Humboldt University, Institute for Mathematics, Rudower Chaussee 25, 10099 Berlin (Allemagne); University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, 5 James Bourchier Blvd, 1126 Sofia (Bulgarie); University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, 5 James Bourchier Blvd, 1126 Sofia (Bulgarie)},
author = {Alexandrov, Bodgan, Grantcharov, Gueo, Ivanov, Stefan},
journal = {Annales de l’institut Fourier},
keywords = {hermitian surfaces; Dirac operator; Dolbeault operator; twistor spinors; Hermitian surface},
language = {eng},
number = {1},
pages = {221-235},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Dolbeault operator on Hermitian spin surfaces},
url = {http://eudml.org/doc/115910},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Alexandrov, Bodgan
AU - Grantcharov, Gueo
AU - Ivanov, Stefan
TI - The Dolbeault operator on Hermitian spin surfaces
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 221
EP - 235
AB - We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.
LA - eng
KW - hermitian surfaces; Dirac operator; Dolbeault operator; twistor spinors; Hermitian surface
UR - http://eudml.org/doc/115910
ER -

References

top
  1. V. Apostolov, J. Davidov, O. Mu&#0161;karov, Self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 349 (1996), 3051-3063 Zbl0880.53053
  2. N. Aronszjan, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 35 (1957), 235-249 Zbl0084.30402MR92067
  3. M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology 3 (Suppl.1) (1964), 3-38 Zbl0146.19001MR167985
  4. H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistor and Killing spinors on Riemannian manifolds, 108 (1990), Humboldt Universität, Berlin Zbl0705.53004
  5. J.-M. Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), 681-699 Zbl0666.58042MR1006380
  6. C. Boyer, A note on hyperhermitian four manifolds, Proc. Amer. Math. Soc. 102 (1988), 157-164 Zbl0642.53073MR915736
  7. T. Friedrich, Der erste Eigenwert des Dirac operators einer kompakten Riemannischen Manningfaltigkeit nichtnegativer Skalarkrümung, Math. Nachrichten 97 (1980), 117-146 Zbl0462.53027MR600828
  8. T. Friedrich, The classification of 4 -dimensional Kähler manifolds with small eigenvalue of the Dirac operator, Math. Ann. 295 (1993), 565-574 Zbl0798.53065MR1204838
  9. P. Gauduchon, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, Sér. A 285 (1977), 387-390 Zbl0362.53024MR470920
  10. P. Gauduchon, Fibrés hermitiens à endomorphisme de Ricci non négatif, Bul. Soc. Math. France 105 (1977), 113-140 Zbl0382.53045MR486672
  11. P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518 Zbl0523.53059MR742896
  12. P. Gauduchon, Hermitian connections and Dirac operators, Bol. U. M. I. Sér. VII XI-B, supl. 2 (1997), 257-289 Zbl0876.53015MR1456265
  13. O. Hijazi, Opérateurs de Dirac sur le variétés riemanniennes : minoration des valeurs propres, (1984) 
  14. N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55 Zbl0284.58016MR358873
  15. K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom. 4 (1986), 291-325 Zbl0629.53058MR910548
  16. K.-D. Kirchberg, The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys. 7 (1990), 447-468 Zbl0734.53050MR1131907
  17. K.-D. Kirchberg, Properties of Kählerian twistor-spinors and vanishing theorems, Math. Ann. 293 (1992), 349-369 Zbl0735.53051MR1166126
  18. A. Moroianu, Structures de Weyl admettant des spineurs parallèles, Bull. Soc. Math. France 124 (1996), 685-695 Zbl0867.53013MR1432061
  19. M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997), 159-177 Zbl0893.53026MR1467652
  20. I. Vaisman, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl. 132 (1982), 1-18 Zbl0512.53058MR696036
  21. M. Wang, Parallel spinors and parallel forms, Ann. Glob. Anal. Geom. 7 (1989), 59-68 Zbl0688.53007MR1029845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.