We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.
We investigate geometric conditions related to Hölder imbeddings, and show, among other things, that the only bounded Euclidean domains of the form U x V that are quasiconformally equivalent to inner uniform domains are inner uniform domains.
We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.
Let be a relatively closed subset of a Euclidean domain . We investigate when solutions to certain elliptic equations on are restrictions of solutions on all of . Specifically, we show that if is not too large, and has a suitable decay rate near , then can be so extended.
We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.
Download Results (CSV)