Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On exposed points and extremal points of convex sets in ℝⁿ and Hilbert space

Stoyu BarovJan J. Dijkstra — 2016

Fundamenta Mathematicae

Let be a Euclidean space or the Hilbert space ℓ², let k ∈ ℕ with k < dim , and let B be convex and closed in . Let be a collection of linear k-subspaces of . A set C ⊂ is called a -imitation of B if B and C have identical orthogonal projections along every P ∈ . An extremal point of B with respect to the projections under is a point that all closed subsets of B that are -imitations of B have in common. A point x of B is called exposed by if there is a P ∈ such that (x+P) ∩ B = x. In the present...

On closed sets with convex projections in Hilbert space

Stoyu BarovJan J. Dijkstra — 2007

Fundamenta Mathematicae

Let k be a fixed natural number. We show that if C is a closed and nonconvex set in Hilbert space such that the closures of the projections onto all k-hyperplanes (planes with codimension k) are convex and proper, then C must contain a closed copy of Hilbert space. In order to prove this result we introduce for convex closed sets B the set k ( B ) consisting of all points of B that are extremal with respect to projections onto k-hyperplanes. We prove that k ( B ) is precisely the intersection of all k-imitations...

More on exposed points and extremal points of convex sets in n and Hilbert space

Stoyu T. Barov — 2023

Commentationes Mathematicae Universitatis Carolinae

Let 𝕍 be a separable real Hilbert space, k with k < dim 𝕍 , and let B be convex and closed in 𝕍 . Let 𝒫 be a collection of linear k -subspaces of 𝕍 . A point w B is called exposed by 𝒫 if there is a P 𝒫 so that ( w + P ) B = { w } . We show that, under some natural conditions, B can be reconstituted as the convex hull of the closure of all its exposed by 𝒫 points whenever 𝒫 is dense and G δ . In addition, we discuss the question when the set of exposed by some 𝒫 points forms a G δ -set.

Page 1

Download Results (CSV)