More on exposed points and extremal points of convex sets in and Hilbert space
Let be a separable real Hilbert space, with , and let be convex and closed in . Let be a collection of linear -subspaces of . A point is called exposed by if there is a so that . We show that, under some natural conditions, can be reconstituted as the convex hull of the closure of all its exposed by points whenever is dense and . In addition, we discuss the question when the set of exposed by some points forms a -set.