The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Vitali sets and Hamel bases that are Marczewski measurable

Arnold MillerStrashimir Popvassilev — 2000

Fundamenta Mathematicae

We give examples of a Vitali set and a Hamel basis which are Marczewski measurable and perfectly dense. The Vitali set example answers a question posed by Jack Brown. We also show there is a Marczewski null Hamel basis for the reals, although a Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null Hamel basis for the plane is easier than for the reals and we give it first. We show that there is no easy way to get a Marczewski null Hamel basis for the reals from one...

Base-base paracompactness and subsets of the Sorgenfrey line

Strashimir G. Popvassilev — 2012

Mathematica Bohemica

A topological space X is called base-base paracompact (John E. Porter) if it has an open base such that every base ' has a locally finite subcover 𝒞 ' . It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.

Page 1

Download Results (CSV)