Porosity of convex nowhere dense subsets of normed linear spaces.
In the paper we compare two notions of porosity: the R-ball porosity defined by Preiss and Zajı́ček, and the porosity which was introduced by Olevskii (here it will be called the O-porosity). We find this comparison interesting since in the literature there are two similar results concerning these two notions. We restrict our discussion to normed linear spaces since the R-ball porosity was originally defined in such spaces.
We prove that density preserving homeomorphisms form a Π11-complete subset in the Polish space ℍ of all increasing autohomeomorphisms of unit interval.
We consider the following notion of largeness for subgroups of . A group G is large if it contains a free subgroup on generators. We give a necessary condition for a countable structure A to have a large group Aut(A) of automorphisms. It turns out that any countable free subgroup of can be extended to a large free subgroup of , and, under Martin’s Axiom, any free subgroup of of cardinality less than can also be extended to a large free subgroup of . Finally, if Gₙ are countable groups, then...
Jachymski showed that the set is either a meager subset of or is equal to . In the paper we generalize this result by considering more general spaces than , namely , the space of all continuous functions which vanish at infinity, and , the space of all continuous bounded functions. Moreover, we replace the meagerness by -porosity.
Assume that L p,q, are Lorentz spaces. This article studies the question: what is the size of the set . We prove the following dichotomy: either or E is σ-porous in , provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either or E is meager. This is a generalization of the results for classical L p spaces.
Page 1