The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 21

Showing per page

Order by Relevance | Title | Year of publication

On the H -property of some Banach sequence spaces

Suthep Suantai — 2003

Archivum Mathematicum

In this paper we define a generalized Cesàro sequence space ces ( p ) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces ( p ) posses property (H) and property (G), and it is rotund, where p = ( p k ) is a bounded sequence of positive real numbers with p k > 1 for all k N .

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard YouyenSuthep Suantai — 2008

Banach Center Publications

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

Page 1 Next

Download Results (CSV)