Some results on norm attaining bilinear forms on L1[0,1].
We characterize the norm attaining bilinear forms on L1[0,1], and show that the set of norm attaining ones is not dense in the space of continuous bilinear forms on L1[0,1].
We characterize the norm attaining bilinear forms on L1[0,1], and show that the set of norm attaining ones is not dense in the space of continuous bilinear forms on L1[0,1].
This is an introduction to geography of log models with applications to positive cones of Fano type (FT) varieties and to geometry of minimal models and Mori fibrations.
The Minkowski sum of two sets A, B in ℝⁿ is defined to be the set of all points of the form a + b for a ∈ A and b ∈ B. Due to its fundamental nature, the Minkowski sum is an important object in many practical application areas such as image processing, geometric design, robotics, etc. However, compared to the simplicity of the definition, a Minkowski sum of plane domains can have quite complicated topological and geometric features in general. This is the case even when the summands are relatively...
We study when the Daugavet equation is satisfied for weakly compact polynomials on a Banach space X, i.e. when the equality ||Id + P|| = 1 + ||P|| is satisfied for all weakly compact polynomials P: X → X. We show that this is the case when X = C(K), the real or complex space of continuous functions on a compact space K without isolated points. We also study the alternative Daugavet equation for polynomials P: X → X. We show that this equation holds for every polynomial on the complex space X =...
Page 1