The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the system of operator equations ABA = A² and BAB = B². Let (A,B) be a solution to this system. We give several connections among the operators A, B, AB, and BA. We first prove that A is subscalar of finite order if and only if B is, which is equivalent to the subscalarity of AB or BA with finite order. As a corollary, if A is subscalar and its spectrum has nonempty interior, then B has a nontrivial invariant subspace. We also provide examples of subscalar operator matrices. Moreover,...
We give several conditions for (A,m)-expansive operators to have the single-valued extension property. We also provide some spectral properties of such operators. Moreover, we prove that the A-covariance of any (A,2)-expansive operator T ∈ ℒ(ℋ ) is positive, showing that there exists a reducing subspace ℳ on which T is (A,2)-isometric. In addition, we verify that Weyl's theorem holds for an operator T ∈ ℒ(ℋ ) provided that T is (T*T,2)-expansive. We next study (A,m)-isometric operators as a special...
We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
Download Results (CSV)