Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

The Σ* approach to the fine structure of L

Sy Friedman — 1997

Fundamenta Mathematicae

We present a reformulation of the fine structure theory from Jensen [72] based on his Σ* theory for K and introduce the Fine Structure Principle, which captures its essential content. We use this theory to prove the Square and Fine Scale Principles, and to construct Morasses.

The enriched stable core and the relative rigidity of HOD

Sy-David Friedman — 2016

Fundamenta Mathematicae

In the author's 2012 paper, the V-definable Stable Core 𝕊 = (L[S],S) was introduced. It was shown that V is generic over 𝕊 (for 𝕊-definable dense classes), each V-definable club contains an 𝕊-definable club, and the same holds with 𝕊 replaced by (HOD,S), where HOD denotes Gödel's inner model of hereditarily ordinal-definable sets. In the present article we extend this to models of class theory by introducing the V-definable Enriched Stable Core 𝕊* = (L[S*],S*). As an application we obtain...

Consistency of the Silver dichotomy in generalised Baire space

Sy-David Friedman — 2014

Fundamenta Mathematicae

Silver’s fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space κ κ for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in κ κ for uncountable regular κ is however consistent (with GCH), assuming...

The tree property at the double successor of a measurable cardinal κ with 2 κ large

Sy-David FriedmanAjdin Halilović — 2013

Fundamenta Mathematicae

Assuming the existence of a λ⁺-hypermeasurable cardinal κ, where λ is the first weakly compact cardinal above κ, we prove that, in some forcing extension, κ is still measurable, κ⁺⁺ has the tree property and 2 κ = κ . If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal θ > λ of cofinality greater than κ) then the proof can be generalized to get 2 κ = θ .

Supercompactness and failures of GCH

Sy-David FriedmanRadek Honzik — 2012

Fundamenta Mathematicae

Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s methods show...

Measurable cardinals and the cofinality of the symmetric group

Sy-David FriedmanLyubomyr Zdomskyy — 2010

Fundamenta Mathematicae

Assuming the existence of a P₂κ-hypermeasurable cardinal, we construct a model of Set Theory with a measurable cardinal κ such that 2 κ = κ and the group Sym(κ) of all permutations of κ cannot be written as the union of a chain of proper subgroups of length < κ⁺⁺. The proof involves iteration of a suitably defined uncountable version of the Miller forcing poset as well as the “tuning fork” argument introduced by the first author and K. Thompson [J. Symbolic Logic 73 (2008)].

Condensation and large cardinals

Sy-David FriedmanPeter Holy — 2011

Fundamenta Mathematicae

We introduce two generalized condensation principles: Local Club Condensation and Stationary Condensation. We show that while Strong Condensation (a generalized condensation principle introduced by Hugh Woodin) is inconsistent with an ω₁-Erdős cardinal, Stationary Condensation and Local Club Condensation (which should be thought of as weakenings of Strong Condensation) are both consistent with ω-superstrong cardinals.

The consistency strength of the tree property at the double successor of a measurable cardina

Natasha DobrinenSy-David Friedman — 2010

Fundamenta Mathematicae

The Main Theorem is the equiconsistency of the following two statements: (1) κ is a measurable cardinal and the tree property holds at κ⁺⁺; (2) κ is a weakly compact hypermeasurable cardinal. From the proof of the Main Theorem, two internal consistency results follow: If there is a weakly compact hypermeasurable cardinal and a measurable cardinal far enough above it, then there is an inner model in which there is a proper class of measurable cardinals, and in which the tree property holds at the...

The Tree Property at ω₂ and Bounded Forcing Axioms

Sy-David FriedmanVíctor Torres-Pérez — 2015

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that the Tree Property at ω₂ together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω₂ together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a Mahlo cardinal....

Easton functions and supercompactness

Brent CodySy-David FriedmanRadek Honzik — 2014

Fundamenta Mathematicae

Suppose that κ is λ-supercompact witnessed by an elementary embedding j: V → M with critical point κ, and further suppose that F is a function from the class of regular cardinals to the class of cardinals satisfying the requirements of Easton’s theorem: (1) ∀α α < cf(F(α)), and (2) α < β ⇒ F(α) ≤ F(β). We address the question: assuming GCH, what additional assumptions are necessary on j and F if one wants to be able to force the continuum function to agree with F globally, while preserving...

Page 1

Download Results (CSV)