Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

The enriched stable core and the relative rigidity of HOD

Sy-David Friedman — 2016

Fundamenta Mathematicae

In the author's 2012 paper, the V-definable Stable Core 𝕊 = (L[S],S) was introduced. It was shown that V is generic over 𝕊 (for 𝕊-definable dense classes), each V-definable club contains an 𝕊-definable club, and the same holds with 𝕊 replaced by (HOD,S), where HOD denotes Gödel's inner model of hereditarily ordinal-definable sets. In the present article we extend this to models of class theory by introducing the V-definable Enriched Stable Core 𝕊* = (L[S*],S*). As an application we obtain...

Consistency of the Silver dichotomy in generalised Baire space

Sy-David Friedman — 2014

Fundamenta Mathematicae

Silver’s fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space κ κ for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in κ κ for uncountable regular κ is however consistent (with GCH), assuming...

The tree property at the double successor of a measurable cardinal κ with 2 κ large

Sy-David FriedmanAjdin Halilović — 2013

Fundamenta Mathematicae

Assuming the existence of a λ⁺-hypermeasurable cardinal κ, where λ is the first weakly compact cardinal above κ, we prove that, in some forcing extension, κ is still measurable, κ⁺⁺ has the tree property and 2 κ = κ . If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal θ > λ of cofinality greater than κ) then the proof can be generalized to get 2 κ = θ .

Supercompactness and failures of GCH

Sy-David FriedmanRadek Honzik — 2012

Fundamenta Mathematicae

Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s methods show...

Measurable cardinals and the cofinality of the symmetric group

Sy-David FriedmanLyubomyr Zdomskyy — 2010

Fundamenta Mathematicae

Assuming the existence of a P₂κ-hypermeasurable cardinal, we construct a model of Set Theory with a measurable cardinal κ such that 2 κ = κ and the group Sym(κ) of all permutations of κ cannot be written as the union of a chain of proper subgroups of length < κ⁺⁺. The proof involves iteration of a suitably defined uncountable version of the Miller forcing poset as well as the “tuning fork” argument introduced by the first author and K. Thompson [J. Symbolic Logic 73 (2008)].

Condensation and large cardinals

Sy-David FriedmanPeter Holy — 2011

Fundamenta Mathematicae

We introduce two generalized condensation principles: Local Club Condensation and Stationary Condensation. We show that while Strong Condensation (a generalized condensation principle introduced by Hugh Woodin) is inconsistent with an ω₁-Erdős cardinal, Stationary Condensation and Local Club Condensation (which should be thought of as weakenings of Strong Condensation) are both consistent with ω-superstrong cardinals.

The consistency strength of the tree property at the double successor of a measurable cardina

Natasha DobrinenSy-David Friedman — 2010

Fundamenta Mathematicae

The Main Theorem is the equiconsistency of the following two statements: (1) κ is a measurable cardinal and the tree property holds at κ⁺⁺; (2) κ is a weakly compact hypermeasurable cardinal. From the proof of the Main Theorem, two internal consistency results follow: If there is a weakly compact hypermeasurable cardinal and a measurable cardinal far enough above it, then there is an inner model in which there is a proper class of measurable cardinals, and in which the tree property holds at the...

The Tree Property at ω₂ and Bounded Forcing Axioms

Sy-David FriedmanVíctor Torres-Pérez — 2015

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that the Tree Property at ω₂ together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω₂ together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a Mahlo cardinal....

Easton functions and supercompactness

Brent CodySy-David FriedmanRadek Honzik — 2014

Fundamenta Mathematicae

Suppose that κ is λ-supercompact witnessed by an elementary embedding j: V → M with critical point κ, and further suppose that F is a function from the class of regular cardinals to the class of cardinals satisfying the requirements of Easton’s theorem: (1) ∀α α < cf(F(α)), and (2) α < β ⇒ F(α) ≤ F(β). We address the question: assuming GCH, what additional assumptions are necessary on j and F if one wants to be able to force the continuum function to agree with F globally, while preserving...

Page 1

Download Results (CSV)