On the regularity of abstract Cauchy problems and boundary value problems
Maximal regularity (in -sense) for abstract Cauchy problems of order one and boundary value problems of order two is studied. In general, regularity of the first problems implies regularity of the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.