The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 2555

Showing per page

Order by Relevance | Title | Year of publication

Induced contraction semigroups and random ergodic theorems

T. Yoshimoto — 1976

CONTENTS§ 1. Introduction.................................................................................................... 5§ 2. Contraction quasi semigroups associated with, a semiflow....................... 7§ 3. Induced contraction semigroups....................................................................... 12§ 4. Discrete random ergodic theorems.................................................................. 18§ 5. Continuous random ergodic theorems...............................................................

The generalized equations of Riccati and their applications to the theory of linear differential equations

T. Iwiński — 1961

CONTENTSIntroduction.............................................................................................................................. 31. Definition of the Riccati equation of the n-th order....................................................... 62. Theorems on the existence of solutions of R equations. Relations between the solutions of linear differential equations and the solutions of the corresponding R equations..................................................................................................

Continuous mappings on continua

T. Maćkowiak — 1979

CONTENTS1. Introduction........................................................................................................ 52. Preliminaries. Special kinds of continua............................................................. 63. Classes of mappings.............................................................................................. 124. Generated classes of mappings.......................................................................... 155. General properties of mappings..............................................................................

Symplectic solution supermanifolds in field theory

Schmitt, T. — 1997

Proceedings of the 16th Winter School "Geometry and Physics"

Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.

Page 1 Next

Download Results (CSV)