The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
Download Results (CSV)