We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
Properties of the minimum diagonal element of a positive matrix are exploited to obtain new bounds on the eigenvalues thus exhibiting a spectral bias along the positive real axis familiar in Perron-Frobenius theory.
The Weyl criterion for uniform distribution of a sequence has an especially simple form in compact abelian groups. The authors use this and the structure of compact monothetic groups and semigroups to generalise the convergence, under certain compactness conditions, of the operator averages: where P is a projection associated with the eigenvalue one of T.
Download Results (CSV)